Langsung ke konten utama

Memilah Data Menggunakan Library Pandas

sc: makeameme.org

Filtering data? Pake filter rokok? atau pake saringan tahu?

Ketika mengolah data menggunakan python, khususnya library pandas, kita mungkin tidak akan menggunakan semua data ataupun kolom pada dataset yang kita miliki. Kita hanya akan memilih data mana yang akan kita gunakan agar pengolahan lebih rapi dan simpel. 

Pandas menyediakan banyak cara untuk menyeleksi data. Tiap cara penyeleksi memiliki keunikan tersendiri dalam metodenya. Penggunaan method perlu memerhatikan kenyamanan dan keperluan.

Sebelum menyeleksi data, salah satu method yang kiranya perlu diaplikasikan ialah ".columns". Method ini akan menampilkan list kolom-kolom dari data frame yang kita gunakan.

Pada tulisan kali ini, aku pake dataset dari kaggle. Data yang aku pake berjudul HRDataset_v14.csv. Dataset bisa diakses pada link di atas.


Setelah mengetahui kolom apa saja yang terdapat pada dataset kita dapat mulai menyeleksi data. Ada beberapa cara yang dapat digunakan. 

1. Seleksi dengan conditional dalam kurung siku.


Kita dapat memfilter data dengan metode df[((conditional))] dengan begitu akan muncul data dengan klasifikasi sesuai kondisional. Perlu diingat contditional yang digunakan pada teknik di atas menggunakan ( | sebagai or, & sebagai and). Berbeda dengan dasar pyhton. 

2. Dengan method query


Cara ini menghasilkan data terfilter yang sama dengan cara sebelumnya. Hanya saja pada pemfilteran tak perlu mencatut lagi dataset, cukup masukkan nama kolom dengan "`" dan semuanya dibungkus dengan apostrof/petik. Cara ini menggunakan syntax conditional yang sama dengan python. 

3. Menggunakan method .loc

method .loc digunakan untuk mengakses baris atau index tertentu. Kita dapat memvariasikan penggunaanya dengan conditional untuk memfilter data.  Syntax conditional yang digunakan mirip dengan conditional pada pemfilteran dengan kurung siku seperti biasa.

4. Menggunakan method terkhusus (eq, ne, le, lt, ge, gt)
Method ini adalah method yang cukup simpel. Namun penggunaannya sangat terkhusus. Tiap method mewakili satu jenis conditional. Penggunaanya dapat dikali brasi dengan method lain.
eq ekuivalen dengan "==" atau data sama dengan 
lt ekuivalen dengan "<" atau data lebih kecil cari
le ekuivalen dengan "<=" atau data lebih kecil sama dengan
gt ekuivalen dengan ">" atau data lebih besar dari
ge ekuivalen dengan ">=" atau data lebih besar sama dengan

Mungkin itu dulu beberapa cara memilah data. Mungkin ga selalu tepat, karena bisa jadi penulis melakukan kesalahn atau kekurang pahaman. Segala bentuk kritik dan saran sangat lah diterima. Terima kasih sudah membaca, semoga jadi berkah untuk kita semua.













Komentar

Postingan populer dari blog ini

Machine Learning: Supervised Learning

Pada artikel sebelumnya, kita telah mempelajari bahwa supervised learning adalah jenis machine learning yang dilatih model dan akurasinya dengan dataset yang sudah diketahui ketepatan outputnya. Nah, pada post kali ini aku bakal sedikit jelasin mengenai supervised learning. Sebelum lebih jauh, mari kita bahas lagi cara penyelesaian supervised learning. Pada dasarnya, masalah pada supervised learning dibagi menjadi dua,  yakni data kontinu serta diskrit. Dari data itu lah, nantinya kita bisa menentukan metode apa yangf tepat untuk kita gunakan dalam machine learning kita. Mari kita bahas satu persatu.  1) Data Kontinu (Regression Problem) Data berjenis kontinu adalah data yang memiliki nilai kontinu. Nilai kontinu adalah nilai yang didapat dari suatu pengukuran, dan nilainya merupakan sebuah nilai antara dua titik. Ciri dari data kontinu adalah tiap nilainya memiliki kesinambungan dengan nilai lainnya. Contoh dari data kontinu adalah skor tes, harga rumah, luas rumah, luas hala...

Sistem Cerdas untuk Peningkatan Kualitas Hidup

src: STEI ITB Kemarin Rabu (02/02/2021), aku mengikuti kuliah umum yang disampaikan Prof. Suhono. Pada kuliah umum kali ini, Prof. Suhono mengangkat isu pengaplikasian sistem cerdas untuk meningkatakan kualitas hidup. Kuliah umum ini diadakan oleh KK Teknologi Informasi, Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung. Berikut adalah hal-hal yang kudapat dari kuliah umum kali ini. Kemajuan teknologi infomrasi yang sangat cepat telah masuk ke segala bidang. Perkembangan sistem teknologi informasi tak berhenti di sistem otomasi saja, tetapi kehadiran sistem otonom dan cerdasnya juga telah membawa angin segar bagi tatanan kehidupan renaisance 4.0 atau society 5.0 . Pola kehidupan bermasyrakt pun ikut berubah. Namun, bila ditelisik, Indonesia masih cukup tertinggal dalam pengaplikasian sistem cerdas. Sebelum kita bahas lebih lanjut, mari kita telaah dulu, apasih sistem cerdas itu. Menurut Prof. Suhono, sistem cerdas bukan sebuah sistem dengan banyak aplikasi atau sistem ...