Langsung ke konten utama

Memilah Data Menggunakan Library Pandas

sc: makeameme.org

Filtering data? Pake filter rokok? atau pake saringan tahu?

Ketika mengolah data menggunakan python, khususnya library pandas, kita mungkin tidak akan menggunakan semua data ataupun kolom pada dataset yang kita miliki. Kita hanya akan memilih data mana yang akan kita gunakan agar pengolahan lebih rapi dan simpel. 

Pandas menyediakan banyak cara untuk menyeleksi data. Tiap cara penyeleksi memiliki keunikan tersendiri dalam metodenya. Penggunaan method perlu memerhatikan kenyamanan dan keperluan.

Sebelum menyeleksi data, salah satu method yang kiranya perlu diaplikasikan ialah ".columns". Method ini akan menampilkan list kolom-kolom dari data frame yang kita gunakan.

Pada tulisan kali ini, aku pake dataset dari kaggle. Data yang aku pake berjudul HRDataset_v14.csv. Dataset bisa diakses pada link di atas.


Setelah mengetahui kolom apa saja yang terdapat pada dataset kita dapat mulai menyeleksi data. Ada beberapa cara yang dapat digunakan. 

1. Seleksi dengan conditional dalam kurung siku.


Kita dapat memfilter data dengan metode df[((conditional))] dengan begitu akan muncul data dengan klasifikasi sesuai kondisional. Perlu diingat contditional yang digunakan pada teknik di atas menggunakan ( | sebagai or, & sebagai and). Berbeda dengan dasar pyhton. 

2. Dengan method query


Cara ini menghasilkan data terfilter yang sama dengan cara sebelumnya. Hanya saja pada pemfilteran tak perlu mencatut lagi dataset, cukup masukkan nama kolom dengan "`" dan semuanya dibungkus dengan apostrof/petik. Cara ini menggunakan syntax conditional yang sama dengan python. 

3. Menggunakan method .loc

method .loc digunakan untuk mengakses baris atau index tertentu. Kita dapat memvariasikan penggunaanya dengan conditional untuk memfilter data.  Syntax conditional yang digunakan mirip dengan conditional pada pemfilteran dengan kurung siku seperti biasa.

4. Menggunakan method terkhusus (eq, ne, le, lt, ge, gt)
Method ini adalah method yang cukup simpel. Namun penggunaannya sangat terkhusus. Tiap method mewakili satu jenis conditional. Penggunaanya dapat dikali brasi dengan method lain.
eq ekuivalen dengan "==" atau data sama dengan 
lt ekuivalen dengan "<" atau data lebih kecil cari
le ekuivalen dengan "<=" atau data lebih kecil sama dengan
gt ekuivalen dengan ">" atau data lebih besar dari
ge ekuivalen dengan ">=" atau data lebih besar sama dengan

Mungkin itu dulu beberapa cara memilah data. Mungkin ga selalu tepat, karena bisa jadi penulis melakukan kesalahn atau kekurang pahaman. Segala bentuk kritik dan saran sangat lah diterima. Terima kasih sudah membaca, semoga jadi berkah untuk kita semua.













Komentar

Postingan populer dari blog ini

Sumber Daya Lahan dan Manusia : Keterbergantungan dan Keberadaan

 Bismillahirahmanirrahimm Assalamulaikum warahtullahi wabarakatuh, Salam sejahtera bagi kita semua. Segala puji bagi Allah, Tuhan Yang Maha Esa, karena berkat rahmatnya tugas ini dapat saya terbiitkan. Selawat dan salam pada Rasulullah SAW.  Pada kesempatan kali ini, saya akan membagikan sedikit pandangan saya mengenai hubungan antara manusia dan sumber daya lahan. Saya melihat makin hari, jumlah lahan menurun sedangkan jumlah manusia di bumi ini terus meningkat. Tak dapat dimungkiri, peningkatan jumlah penduduk Bumi aka membuat kebutuhan akan lahan, baik untuk tempat tinggal, industri, hingga lumbung pangan meningkat. Peningkatan signifikan pada jumlah penduduk Bumi tanpa ada penangganan yang tepat justru akan menyebabkan krisis. baik dari sisi ekonomi, kemasyarakatan, bahkan teknologi. Oleh karena itu, diperlukan sebuah kajian komperehensif mengenai masalah tersebut. Pada kesempatan kali ini saya akan melampirkan sedikit pandangan saya mengenai masalah tersebut menggunakan m...

Pre-Processing, Membersihkan Dataframe pada Python

Sebagian kita mungkin mengenal python sebagai salah satu bahasa pemrograman yang dapat digunakan untuk mengolah data. Salah satu module yang cukup umum ialah Pandas. Namun, sedikit dari kita menyadari pentingnya membersihkan data sebelum digunakan.  Sebelum masuk ke Pemrosesan mari kita nikmati sebuah meme dari reddit: gambar 1.0 Data yang diolah tidak selalu bersih. Pada beberapa kasus terdapat data unknown atau data yang keluar dari batas wajar dan tidak sesuai mengikuti aturan di dunia nyata. Misal juamlah kuantitas belanja yang mencapai puluhan ribu pada sekali check out atau kuantitas yang nilainya lebih kecil dari satu. Oleh karena itu, diperlukan pembersihan dataset dari data yang rusak atau kotor. Banyak metode yang dapat dilakukan untuk menormalisasi data, di antaranya mengantinya dengan modus, rata-rata, median, atau menghapusnya. Pada kasus ini, penulis menggunakan teknik dropping atau menghapus data yang rusak atau tak sesuai denagn method .drop(). Sebelum member...

Solusi Mengenai Masalah Air Bersih

  Haloo semuaa, kembali lagi bersamaku, kali ini aku akan memberikan sebuah solusi untuk permasalahan pada blog ku sebelumnya yang berjudul “Masalah air bersih di daerah gunung putri”.  Sebelumnya, permasalahan air bersih di daerah gunung putri terkadang mengalami masalah, seperti air yang tiba-tiba kotor atau mati air. Keadaan air yang kotor ini kadang bisa diperparah jika terjadi banjir di daerah sekitar, karena banyak lumpur yang menumpuk. Nah, maka dari itu aku dan teman kelompokku akan memberikan solusi yang akan digunakan, tetapi lebih fokus ke dalam permasalahan air yang kotor ingin diubah menjadi bersih kembali.  Pada kali ini kami akan menawarkan sebuah solusi untuk masalah air bersih pada daerah ini. Solusi ini aku buat untuk mengatasi air kotor yang terkadang muncul. Kami menaruh solusi dengan menggunakan sensor pada setiap titik pada pipa hingga bak penampungan ketika melakukan penyaringan terhadap air. Sensor ini akan dibuat untuk bekerja secara otomatis, jad...