Langsung ke konten utama

Machine Learning: Supervised Learning

Pada artikel sebelumnya, kita telah mempelajari bahwa supervised learning adalah jenis machine learning yang dilatih model dan akurasinya dengan dataset yang sudah diketahui ketepatan outputnya. Nah, pada post kali ini aku bakal sedikit jelasin mengenai supervised learning.

Sebelum lebih jauh, mari kita bahas lagi cara penyelesaian supervised learning. Pada dasarnya, masalah pada supervised learning dibagi menjadi dua,  yakni data kontinu serta diskrit. Dari data itu lah, nantinya kita bisa menentukan metode apa yangf tepat untuk kita gunakan dalam machine learning kita. Mari kita bahas satu persatu. 

1) Data Kontinu (Regression Problem)

Data berjenis kontinu adalah data yang memiliki nilai kontinu. Nilai kontinu adalah nilai yang didapat dari suatu pengukuran, dan nilainya merupakan sebuah nilai antara dua titik. Ciri dari data kontinu adalah tiap nilainya memiliki kesinambungan dengan nilai lainnya. Contoh dari data kontinu adalah skor tes, harga rumah, luas rumah, luas halaman, dan ketinggian tanah.

Banyak metode untuk menghandle data kontinu. Namun, tidak ada metode yang fit at all, artinya, untuk mencari metode yang paling pas, kita harus menguji coba dan membandingkan hasilnya. Di antara metode yang dapat digunakan untuk meng-handle data kontinu adalah 

  • regresi linear 
  • pohon keputusan 
  • neural network, dan  
  • K-Nearewst Neighbors.

2) Data Diskrit (Classification Problem)

Data diskrit adalah data yang sifatnya pasti. Data ini bukan merupakan nilai hasil pengukuran, melainkan berasal dari perhitungan. Nilai dari data diskrit bukan suatu nilai dari rentang. Namun, suatu nilai pasti. Data ini merupakan data jumlah dari suatu kategori (kategorikal). Contoih dari data diskrit adalah jumlah meja dalm ruangan, angka pada mata dadu, dan data tumor berbahaya atau tidak.

Data diskrit atau yang juga disebut  data kategorikal digunakan untuk mengklasifikasikan atau menggolongkan objek amatan atau kejadian dalam kelompok, kategori atau klasifikasi tertentu. Data digunakan untuk menunjukkan kesamaan atau perbedaan pada ciri tertentu suatu objek. Data ini umumnya diperoleh dari pengkategorian suatu survei atau eksplorasi buakn pengukuran.

Dalam menghadapi data diskrit cukup banyak model atau metode yang dapat digunakan. Seperti data kontinu, tidak ada model yang fit at all. Untuk itu, berikut merupakan beberapa model atau metode yang dapat digunakan utnuk menghandle data diskrit, di antaranya, klasifikasi biner, klasifikasi multikelas, klasifikasi multilabel, serta klasifikasi tak imbang. 

Agar lebih jelas, mari kita pecah satu persatu model untuk tiap metode satu persatu. 

Klasifikasi Biner (Binary Classification)

 Biasanya digunakan untuk mengklasifikasi sesuatu dengan dasar satu kelas, atau satu variabel. contoh masalah: pendeteksi email spam. 

  • Regresi logistik 
  • K-Nearest Neighbors
  • Decision Tree
  • Support vector machines
  • Naive bayes

 Klasifikasi Multikelas (Multi-Class Classification)

 Biasanya digunakan untuk mengklasifikasi sesuatu yang inputnya memiliki banyak variabel(kelas).  Contoh masalah: pendeteksi muka, jenis tanaman, karakter opstis. Beberapa masalah multikelas juga dapat diselesaikan dengan klasifikasi biner.

  • Regresi logistik 
  • K-Nearest Neighbors
  • Decision Tree
  • Support vector machines
  • Naive bayes
  • Random forest
  • Gradient boosting

Klasifikasi Multilabel(Multi-label Classification)

Biasanya digunakan untuk mengklasifikasi sesuatu dengan multiple output. Contoh masalah: mendeteksi objek-objek dalam foto(orang, apel, sepeda)  

  • Multilabel decision tree
  • Multilabel random forest
  • Multilabel gradient boosting

Klasifikasi Multilabel(Multi-label Classification)

Biasanya digunakan upadqa data yang data tiap kelasnya tidak terditribusi secara seimbang. Contoh masalah: pendeteksi fraud, outlier, diagnosis medis. Problem yang ada biasanya merupakan problem biner, meskipun penyelesaiannya membutuhkan teknbik spesial.

Teknik khusus (spesial) digunakan untuk mengubah kompisisi sampel dataset train yang ada dengan undersampling mayority data atau oversampling minority data. 

  • Random undersampling
  • SMOTE oversampling

Ăšntuk menyempurnakan sistem diperlukan metrik performa alternatif karena akurasi klasifikasi yang dilakukan mungkin kurang tepat. Contoh dari metrik performa alternatif di antaranya

  • Precission 
  • Recall
  • F-Measure

 Akhirnya, pada artikel ini kamu mempelajari lebih jauh mengenai jenis-jenis modeling, serta metode untuk mengurus data kontinu dan diskrit. Nantinya, kamu perlu mendefinisikan metode atau model mana yang paling sesuai dengan data dan output yang kamu harapkan. Pada tahap selanjutnya kamu akan memelajari tiap jenis serta metode yang lebih dalam dari supervised learning ini.

Terima kasih sudah membaca. Kami sangat menghargai berbagai masukan yang diberikan. Sampai jumpa pada artikel selanjutnya, dan semoga bermanfaat.


sumber:

http://file.upi.edu/Direktori/FIP/JUR._PEND._LUAR_BIASA/195602141980032-TJUTJU_SOENDARI/Power_Point_Perkuliahan/statistik_deskriptif/ST._DESKRIPTIF_-2.ppt_%5BCompatibility_Mode%5D.pdf

https://machinelearningmastery.com/types-of-classification-in-machine-learning/

https://srnghn.medium.com/machine-learning-trying-to-predict-a-numerical-value-8aafb9ad4d36

coursera - Machine Learning Course by Stanford University 

Komentar

Postingan populer dari blog ini

Sumber Daya Lahan dan Manusia : Keterbergantungan dan Keberadaan

 Bismillahirahmanirrahimm Assalamulaikum warahtullahi wabarakatuh, Salam sejahtera bagi kita semua. Segala puji bagi Allah, Tuhan Yang Maha Esa, karena berkat rahmatnya tugas ini dapat saya terbiitkan. Selawat dan salam pada Rasulullah SAW.  Pada kesempatan kali ini, saya akan membagikan sedikit pandangan saya mengenai hubungan antara manusia dan sumber daya lahan. Saya melihat makin hari, jumlah lahan menurun sedangkan jumlah manusia di bumi ini terus meningkat. Tak dapat dimungkiri, peningkatan jumlah penduduk Bumi aka membuat kebutuhan akan lahan, baik untuk tempat tinggal, industri, hingga lumbung pangan meningkat. Peningkatan signifikan pada jumlah penduduk Bumi tanpa ada penangganan yang tepat justru akan menyebabkan krisis. baik dari sisi ekonomi, kemasyarakatan, bahkan teknologi. Oleh karena itu, diperlukan sebuah kajian komperehensif mengenai masalah tersebut. Pada kesempatan kali ini saya akan melampirkan sedikit pandangan saya mengenai masalah tersebut menggunakan m...

Pre-Processing, Membersihkan Dataframe pada Python

Sebagian kita mungkin mengenal python sebagai salah satu bahasa pemrograman yang dapat digunakan untuk mengolah data. Salah satu module yang cukup umum ialah Pandas. Namun, sedikit dari kita menyadari pentingnya membersihkan data sebelum digunakan.  Sebelum masuk ke Pemrosesan mari kita nikmati sebuah meme dari reddit: gambar 1.0 Data yang diolah tidak selalu bersih. Pada beberapa kasus terdapat data unknown atau data yang keluar dari batas wajar dan tidak sesuai mengikuti aturan di dunia nyata. Misal juamlah kuantitas belanja yang mencapai puluhan ribu pada sekali check out atau kuantitas yang nilainya lebih kecil dari satu. Oleh karena itu, diperlukan pembersihan dataset dari data yang rusak atau kotor. Banyak metode yang dapat dilakukan untuk menormalisasi data, di antaranya mengantinya dengan modus, rata-rata, median, atau menghapusnya. Pada kasus ini, penulis menggunakan teknik dropping atau menghapus data yang rusak atau tak sesuai denagn method .drop(). Sebelum member...

Solusi Mengenai Masalah Air Bersih

  Haloo semuaa, kembali lagi bersamaku, kali ini aku akan memberikan sebuah solusi untuk permasalahan pada blog ku sebelumnya yang berjudul “Masalah air bersih di daerah gunung putri”.  Sebelumnya, permasalahan air bersih di daerah gunung putri terkadang mengalami masalah, seperti air yang tiba-tiba kotor atau mati air. Keadaan air yang kotor ini kadang bisa diperparah jika terjadi banjir di daerah sekitar, karena banyak lumpur yang menumpuk. Nah, maka dari itu aku dan teman kelompokku akan memberikan solusi yang akan digunakan, tetapi lebih fokus ke dalam permasalahan air yang kotor ingin diubah menjadi bersih kembali.  Pada kali ini kami akan menawarkan sebuah solusi untuk masalah air bersih pada daerah ini. Solusi ini aku buat untuk mengatasi air kotor yang terkadang muncul. Kami menaruh solusi dengan menggunakan sensor pada setiap titik pada pipa hingga bak penampungan ketika melakukan penyaringan terhadap air. Sensor ini akan dibuat untuk bekerja secara otomatis, jad...